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Abstract We investigate the plasmonic response of gold

nanospheres calculated using discrete dipole approximation

validated against the results from other discretization meth-

ods, namely the finite-difference time-domain method and the

finite-element methods. Comparisons are also made with

calculations from analytical methods such as the Mie solution

and the null-field method with discrete sources. We consider

the nanoparticle interacting with the incident field both in free

space and sitting on a planar substrate. In the latter case, dis-

crete dipole approximation with surface interaction is used;

this includes the interaction with the ‘image dipoles’ using

Sommerfeld integration.

1 Introduction

Noble metals are particularly good electrical conductors

due to the number of free electrons that form a negatively

charged ‘cloud’ in the lattice of positively charged atomic

nuclei. These electrons collectively oscillate when stimu-

lated by an external electric field. When the natural oscil-

lation frequency of the system matches that of the incident

field, the plasmon resonance [1] phenomenon can be

observed. The resonance can occur either with the bulk of

the metallic body or confined to its surface. In recent times,

the surface plasmon resonance phenomenon of noble metal

nanoparticle has found its way into many applications

ranging from high-resolution imaging [2], biomarkers for

the diagnosis of Alzheimer’s [3], targeting cancer cells [4]

and lab-on-a-chip immunosensors [5], to name but a few.

Most applications involve clusters or array of nano-

particles, and the morphology of the individual particle is

polyhedral [6, 7]. The aim of this paper is to benchmark

the discrete dipole approximation with surface interaction

(DDA-SI) [8] against other modelling methods when

applied to noble metal nanoparticle plasmonics. Although

the discretization methods such as DDA [9, 10], finite-

element method (FEM) [11] and finite-difference time-

domain method (FDTD) [12] can accommodate multiple

arbitrary-shaped, inhomogeneous and anisotropic parti-

cles, we model a single spherical nanoparticle for ease of

standardization, particularly when comparing against the

analytical methods. The analytical methods with which

we compare are the Lorenz–Mie theory [13, 14] and the

null-field method with discrete sources (NFM-DS) [15], a

variant of the T-matrix method [16]. A general review of

the above-mentioned methods is provided by Wriedt

[17].

In the models, the nanoparticle is initially illuminated by

a plane wave in free space (Fig. 1a). Next, a substrate is

included with the plane wave propagating at normal to the

planar surface (Fig. 1b). Finally, an evanescent wave

resulting from the total internal reflection (TIR) of a plane
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wave below the planar surface (Fig. 2) is used as the source

of illumination.

2 Modelling methods

We will briefly describe the modelling methods and the

respective packages used for comparison. A general

comparison including comparative calculation times

between DDA, FEM, FDTD, Lorenz–Mie theory and the

T-matrix method was presented by Parson et al. [18].

Here, we specifically target the Au sphere, where it is

widely known that there is a characteristic peak in its

extinction spectrum when its diameter is 50 nm and the

incident wavelength is 515–540 nm [19–21], depending

on whether it is in air, colloidal or on a substrate. We also

made calculations for the Au sphere with the diameter of

200 nm for comparison.

The dispersion of the refractive indices of the materials

used in the models is calculated using continuous functions

instead of measured data; for Au, the Drude-critical points

[22] formula is used, and for BK7 borosilicate glass, the

Sellmeier equation [23] is used (Fig. 3). The reason behind

using the analytical function for the dispersion is to address

the fundamental incompatibility between the frequency

domain measured dispersion data and the FDTD method

which is a time-domain method [24].

2.1 DDA and DDA-SI

The DDA approach essentially treats the arbitrarily shaped

scatterer(s) as being made up of Rayleigh scatterers, i.e.,

polarizable dipoles stacked in, usually, the cubic lattice

formation. The dipoles react not only to the excitation from

the incident field but also to the re-radiation from the other

dipoles. DDA assumes the steady state and calculation are

performed for one wavelength at a time.

A simple linear system of equations represents the

relationship between the incident field, mutual interaction

between N dipoles in the scattering structure(s) and the

dipole moments [9, 10],

XN

k¼1

AjkPj ¼ Einc;j; ð1Þ

where Einc,j is the incident field and Pj is the unknown

dipole moment at dipole j. For DDA, Ajk [25] is the Green

tensor Gjk,

Gjk ¼ expðikrjkÞ
k2ðr̂jkr̂jk � 13Þ

rjk

þ ikrjk � 1

r3
jk

ð3r̂jk r̂jk � I3Þ
" #

;

ð2Þ

whereas for DDA-SI, Ajk = Gjk ? Rjk, where Rjk is the

surface interaction term described in [26]. The system of

Fig. 1 Schematic representing the plane illumination of a gold

nanoparticle a in free space b on a BK7 glass substrate

Fig. 2 Schematic representing the evanescent a TE and b TM

illumination of a gold nanoparticle on a BK7 glass prism (substrate)
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linear equations is usually solved using an iterative

method; for this paper, the generalized minimum residual

method (gmres) [27] was used.

Having obtained the solution for dipole moments Pj, the

extinction and absorption cross sections can be calculated

as [10],

Cext ¼
4pk

jE0j2
XN

j¼1

Im E�inc;j � Pj

� �
; ð3Þ

and

Cabs ¼
4pk

jE0j2
XN

j¼1

Im Pj � ða�1
j Þ
�P�j

h i
� 2

3
k3jPjj2

� �
; ð4Þ

respectively, normalized against the intensity of the inci-

dent field |E0|2, where aj is the dipole polarizability, cal-

culated using the lattice dispersion relation (LDR) [28].

We calculate the scattering cross section by simply

taking the difference between (3) and (4), i.e., Csca =

Cext - Cext. Alternatively, a direct and more accurate

calculation of scattering cross section can be obtained

using the formula defined by Draine [10].

The corresponding extinction, absorption and scattering

efficiencies for a sphere with radius a are

Qext ¼ Cext=ðpa2Þ; Qabs ¼ Cabs=ðpa2Þ;
Qsca ¼ Csca=ðpa2Þ; ð5Þ

where pa2 is its cross-sectional area [25].

The standard DDA was designed for modelling free-

space light scattering. We use DDA-SI to accommodate the

particle sitting on a planar substrate [8, 29]. DDA-SI is a

public domain MATLAB toolbox for both free-space and

half-space-substrate light-scattering calculations. The

interaction between the dipoles and their image counterpart

involved decomposing the spherical wave into planar and

cylindrical components by means of Sommerfeld integra-

tion [30, 31] as did an earlier Fortran implementation of

DDA with surface interaction called DDSURF by Schmehl

et al. [32].

The relationship [25] between the number of dipoles N,

the lattice spacing d and the radius of the target sphere a is

Nd3 ¼ 4

3
pa3: ð6Þ

Strictly speaking, the model is made up of point dipoles,

although each dipole occupies a cubic element of volume

d3. The validity criterion for the lattice spacing was defined

by Draine and Flatau [25] as

d� 1

kjnj ; ð7Þ

where k is the wave number of the incident field and n is

the complex refractive index. However, this assumes that

the imaginary component of n is relatively small. For noble

metals, the imaginary component of the refractive index is

high and increasing towards the IR end of the spectrum.

We increase the number of dipoles and thereby decrease

d until the solution converges.

2.2 FDTD

FDTD is a popular and an extremely versatile method

based on the discretization of Maxwell’s curl equations

[12, 33]; the numerators and denominators in the deriv-

atives are replaced by corresponding finite spatial ele-

ments and temporal steps. The computational domain

comprises cuboid volume elements called Yee cells. In

some cases, the computational domain is made large

enough so that the interaction of interest happens before

any wave reaches and reflects off the computational

boundary. However, it is beneficial and often essential,

in saving computational time and memory usage, to

make the computational domain as small as possible by

using an absorbing boundary. A popular and effective

way is to use the perfectly matched layers (PML)

method [34] or subsequent modifications and extensions

thereof [35–37].

Unlike the other methods considered here, FDTD is the

only time-domain method; thus, discrete time steps are

taken to represent time evolution. It also differs from the

other methods in that multiple frequencies are simulta-

neously accounted for during each time step. One notable

limitation of FDTD is that if the plane wave is propagating

in an oblique direction, the wave front suffers from ‘stair-

casing’ due to the spatial discretization. Yee cells are

required throughout the whole computational domain,

including ambient space; this is computationally expensive

especially with 3D FDTD.

For the simulations, we used FDTD Solutions 7.0.1 by

Lumerical Solutions [38]. The package allowed for adap-

tive meshing, i.e., smaller cells where more detail is

required and larger cells in other zones save RAM and

computational time.

The absorption cross section and efficiency are calcu-

lated using the Lumerical built-in functions [38] as

follows:
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To ensure causality and numerical stability, the largest

time step allowable is limited by the smallest spatial mesh

element, whose size is in turn determined by the smallest

feature of interest in the simulated geometry. Therefore,

using smaller mesh elements in FDTD increases the com-

putational burden both due to the increased number of

spatial points and to the smaller time step required for

proper convergence. Another issue in FDTD modelling

arises when trying to launch a white-light wave at a fixed

oblique angle with respect to a planar interface such as a

substrate: Since broadband sources inject fields with a

constant in-plane wave vector at all frequencies and the

magnitude of the total wave vector is proportional to fre-

quency, the actual injection angle will change as a function

of frequency [2], thus making a fixed-angle broadband

study rather cumbersome due to the necessity to run mul-

tiple single-frequency simulations. As this limitation

negates the broadband advantage of FDTD for non-normal

incidence, we chose not to compare the FDTD method with

the other modelling techniques in the cases of oblique

illumination.

2.3 FEM

The finite-element method (FEM) [39] involves solving the

Helmholtz equation whereby the spatial derivatives at the

surface of the scatterer are solved numerically as a

boundary value problem. FEM can be used to model the

light scattering from arbitrarily shaped, dispersive, inho-

mogeneous and anisotropic structures for a single fre-

quency at a time. A suitable grid mesh or element

(triangular, tetrahedral or hexahedral) is used to represent

the surface or structure, with continuity conditions required

at adjacent grid cells. The mesh can be denser to represent

regions with fine structure.

The steady spatial distribution of E and H at the node

points is the quantities of interest. The system of linear

equations can be solved using Gaussian elimination or the

conjugate gradient method. The coefficient matrix for the

system of equations represents only the interactions

between neighbouring grid mesh cells and thus will be a

banded diagonal. The recommended mesh cell size is Bk/

20, although k/5 has been proven to suffice in some cases.
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As with FDTD, the computational region for the FEM is

larger than the scatterer. The Helmholtz equation is an

elliptic differential equation that is solved as a boundary

value problem at the surface at the edge of computational

domain (simulating infinity). The most common way to

address the radiation condition is with the unimoment

method [39]. Other methods of treating the edge of the

computational domain include approximate boundary

conditions [40] and combining FEM with a surface integral

method [41, 42].

For the simulations, we used the FEM implementation

of COMSOL Multiphysics 3.5a RF Module [43]. Tetra-

hedral elements are used to model the structures. The

simulation domain is surrounded by the PML absorbing

boundary, and additionally, scattering boundary conditions

are defined at the outer boundaries [44].

The absorption cross section is calculated using Cabs

= 2*Qav_rfw/P0, where Qav_rfw is a COMSOL vari-

able for the resistive heating in half of the particle and

P0 = E0^2*0.5*c0_rfw*epsilon0_rfw*n1 is the incident

flux. where the variable with the ‘rfw’ is inherently

available in COMSOL [43]. To calculate the scattering

cross section, scattered normal flux is integrated over a

boundary enclosing the nanoparticle [45], Csca=2*nsc-

Poav/P0 where x, y and z-components of the scattered

flux,

scPoxav ¼ 0:5 � realðscEy � conjðscHzÞ � scEz � conjðscHyÞÞ;
scPoyav ¼ 0:5 � realðscEz � conjðscHxÞ � scEx � conjðscHzÞÞ;
scPozav ¼ 0:5 � realðscEx � conjðscHyÞ � scEy � conjðscHxÞÞ;

scattered normal flux,

nscPoav ¼ onx � scPoxavþ ony � scPoyavþ onz � scPozav;

sign factor for the outward normals to interior boundary,

ofact ¼ ifðnx � xþ ny � yþ nz � z [ ¼ 0; 1;�1Þ;

and the x, y and z-components of the outward normals to

interior boundary,

onx ¼ nx � ofact; ony ¼ ny � ofact; onz ¼ nz � ofact:

2.4 Lorenz–Mie theory

The Lorenz–Mie theory [13, 14, 46] gives the solution to

the vector Helmholtz equations for scattering by a homo-

geneous and isotropic sphere illuminated by an incident

plane wave. The scattering cross section can be calculated

from the Mie scattering coefficients pn and qn:

Csca ¼
2p
k2

X1

n¼1

ð2nþ 1Þðjpnj2 þ jqnj2Þ; ð8Þ

and the extinction cross section is

Cext ¼
2p
k2

X1

n¼1

ð2nþ 1ÞReðpn þ qnÞ: ð9Þ

The Mie solution is valid for a sphere of any diameter;

large spheres would require more terms in the truncated

infinite sum. On the issue of when to apply the Mie

solution, as a rule of thumb, any sphere approaching 10

wavelengths in size can be treated with geometric optics,

and approaching a tenth of a wavelength, it begins to

behave like a dipole, effectively a Rayleigh scatterer; the

Mie solution is suitable for a mesoscopic scatterer.

We use the MATLAB Mie scattering implementation by

Mätzler [47] to simulate the Au sphere in free space under

plane wave illumination.

2.5 NFM-DS

The null-field method with discrete sources (NFM-DS)

[15] is a variant of the T-matrix method pioneered by

Waterman [16]. In the conventional T-matrix method, the

field components comprise spherical vector wave function

(SVWF) expansions of the incident, internal and scattered

fields. The T-matrix relates the expansion coefficients of

the scattered field to those of the incident field. The ele-

ments of the T-matrix are computed via surface integration

of products of the SVWFs.

In the NFM-DS, the internal field is calculated using the

expansion of multiple discrete sources. This allows for the

computation of the T-matrix for particles with high aspect

ratios. Furthermore, the NFM-DS is not restricted to axis-

symmetric scatterers and also allows for particle-surface

light scattering. With this method, the exact solution for a

particle positioned on or in the vicinity of a planar substrate

can be attained [48]. Apart from arbitrary illumination

from the upper half-space, surface evanescent wave illu-

mination is also catered for [49].

In order to compute the extinction cross section within

the NFM-DS method, we follow the derivation for that of

free space by Mishchenko et al. [50]. We integrate the

time-averaged pointing vector Sðr; tÞh i over the detector

area DS measuring the internal reflected plane wave

WDS � DS� Cextð Þ � ILED þ O r�2
� �

;

Cext ¼
4p
ksub

ImðETþS � ERÞ
jERj2

;
ð10Þ

where ER is the totally internal reflected field, ET?S is the

transmitted field scattered by the particle, ksub is the wave

number of the substrate and ILED is the intensity of the

incident beam. The transmitted scattered field is expressed

as a series of asymptotic functions ðm3;T
mn ðh;/Þ;

n3;T
mn ðh;/ÞÞ; which are derived from the integral represen-

tation of asymptotic radiating SVWFs over plane waves,
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using the method of stationary phase for integral evaluation

by Doicu et al. [49].

Our approach enables a very accurate computation of the

extinction cross section within the T-matrix method for

particles of arbitrary shape, illuminated by an evanescent

wave. Similar formulae for clustered spherical particles and

non-evanescent illumination were obtained by Mackowski

[51]. In spite of the other widely used approximation, we do

not neglect the particle–surface interaction and the deriva-

tion of the incident field over the particle surface [52].

3 Test configurations and results

The calculations were performed on different computers

with different operating systems, and thus, the meaningful

time comparison data cannot be presented here. However,

the priority was to cross-validate DDA-SI against other

modelling methods.

3.1 Plane wave illumination

The first test scenario (Fig. 1a) involves the Au nanosphere

illuminated by a plane wave where Qext; Qabs and Qsca

results of DDA, FEM and FDTD calculations are compared

against those of the Mie solution (Fig. 4). The number of

dipoles used for the DDA simulations was N = 552 and

N = 4,224 for the sphere diameters of 50 nm and 200 nm,

respectively. Overall DDA appears most inaccurate

benchmarked against the Mie solution, and more so for the

smaller 50-nm particle. This is not due to the lattice

spacing not being small enough because even with greater
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efficiency spectra of the 50-nm

(left column) and 200-nm (right

column) Au nanosphere in free

space, illuminated by a plane
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number of dipoles the Qext and Qabs results converge as if

they are offset above the results from the other models, i.e.,

as if the approximate sphere was slightly larger than the

target sphere.

Next, the particle is placed on a planar BK7 substrate

whilst the incident beam is the direction normal to the

surface (Fig. 1b). Here, the Qabs and Qsca results (Fig. 5)

for DDA are more consistent with FEM and FDTD when

compared to the free-space scenario. Here, the numbers of

dipoles used were N = 552 and N = 4,224 for the sphere

diameters of 50 nm and 200 nm, respectively, although it

was found that, in the presence of the substrate, conver-

gence is achieved with a smaller number of dipoles.

In comparing the results between the different-sized

spheres, for both the free-space and substrate scenarios, it

is evident that for the larger particle, scattering becomes

more dominant than absorption.

3.2 Evanescent wave illumination

When a plane wave undergoes total internal reflection as

shown in Fig. (2), there will still be a complex wave vector

and polarization vector beyond the media interface [53],

which result in an evanescent wave on the surface of the

substrate. Here, we set the incident angle at 70� and the

ambient medium was water, with the dispersion-free

refractive index of n = 1.33. The simulated evanescent

wave and nanoparticle for the FEM model were based on

previous work by Huda et al. [44].

In the case of the TE incident wave, the resultant eva-

nescent field has only the component parallel to the planar

interface, whereas for the TM incident wave, both the

parallel and perpendicular components exist. Thus, there

will be more evanescent wave coupling in the TM case on

which we base our calculations.
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efficiency spectra of the 50-nm
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column) Au nanosphere sitting
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propagating in normal to the
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Figure 6 shows the absorption and extinction efficiency

spectra of a 50-nm Au sphere on a BK7 glass substrate

undergoing TM evanescent field illumination where com-

parisons are made between DDA-SI and FEM. The

extinction efficiency spectrum is also verified against that

of the NFM-DS analytical solution. The number of dipoles

used for the DDA-SI simulations was N = 912.

4 Discussion

For DDA, we modelled approximate spheres without any

volume correction suggested by Draine [10] and Yurkin

et al. [54]; this does not result in significant errors in the

cases where the refractive index contrast between the

scatterer and the ambient medium is low, e.g., for water

spheres [8]. However, in our DDA results for the Au sphere

in free space (Fig. 4), the Qext and Qabs spectra for DDA

appear as if the particle radius is about 3% larger than it

should be. This is due to the high imaginary component of

the refractive index of Au (Fig. 3a) that not only requires

higher number of dipoles for the model but exacerbates

errors due to the lack of volume correction. Yurkin et al.

[55] specifically address the accuracy of DDA when sim-

ulating Au nanoparticles. Improvements to the accuracy

may also be achieved by using the filtered coupled dipoles

(FCD) [56] method for calculating the dipole polarizability.

Generally, as can be seen in Eq. (7), smaller lattice

spacings are required in the shorter wavelength regime. Au

and other metals such as Ag, Al and Cr have imaginary

components in their refractive indices that increase with the

wavelength to very high levels. This means that modelling

these metals, in comparison with other materials, requires a

relatively large number of dipoles per unit volume

throughout the whole spectrum ranging from UV to IR.

In the case of the plane wave illumination for the Au

sphere on a BK7 glass substrate, the DDA-SI results were

in good agreement with those of FEM and FDTD (Fig. 5),

even without volume correction. We speculate that this is

due to the lower half-space medium being glass having the

effect of reducing the overall refractive index contrast of

Au. We also found that although we used the same corre-

sponding numbers of dipoles as those of the free-space

scenario, our preliminary results with fewer of dipoles were

quite satisfactory. This suggests that the substrate helps

with convergence, due to the lower refractive index

contrast.

Under the simulated evanescent TM illumination, the

Qabs and Qext spectra (Fig. 6) from the DDA-SI and FEM

calculations are reasonably consistent. The additional

comparison with the Qext spectrum calculated using the

NFM-DS further validated the results.

The DDA-SI MATLAB toolbox [8] can be downloaded

from https://code.google.com/p/dda-si/. In addition to the

evanescent wave example we presented here, it can be used

with arbitrary illumination ranging from plane waves,

dipole sources, focussed laser beams (e.g., Gaussian, La-

guerre-Gauss and Bessel), field emanating from a moving

charge [57] or any valid form of electric field distribution,

propagating in any direction; reflection and transmission at

the planar interface will have to be addressed. Multiple

scatterers with arbitrary shapes and any combination of

complex refractive indices may be used. The planar sub-

strate may also have an arbitrary complex refractive index;

the interaction with the planar surface involves contour

integration of the complex wave vectors outlined in detail

in [26, 58].

The field from a dipolar source can be obtained from the

Green’s tensor (2) where it is evident that the far-field term

is dependent on 1/r whereas the near-field term is eva-

nescent, i.e., diminishes rapidly with distance, proportional

to 1/r3. Thus, in the scenario involving a dipolar source in

contact with a nanoparticle or any simulation involving

near-field coupling for that matter, the field gradients can

be very high. To avoid significant errors in DDA or DDA-

SI, it is required that lattice spacings be small enough to

effectively capture the high-field gradients with respect to

displacement. The equivalent approach for FDTD and

FEM would use smaller grid spacings and mesh sizes,

respectively.
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(a) (b)Fig. 6 The a absorption and

b extinction efficiency spectra

of a 50-nm Au nanosphere

under evanescent wave

illumination (TM), calculated

using DDA-SI and FEM, and in

b also compared against the

NFM-DS
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5 Conclusion

We benchmarked the DDA-SI MATLAB toolbox against

the FEM, FDTD, Mie solution and NFM-DS for the

accuracy when modelling surface plasmon resonance.

Without volume correction, the free-space DDA calcula-

tions presented errors that appear as an offset in the Qabs

and Qext spectra, as if representing a marginally larger

particle. However, this error is eliminated in the DDA-SI

implementation where the particle sits on a substrate; we

propose that although the substrate exists only in the lower

half-space, it causes a reduction in the overall contrast of

the refractive index between the scatterer with its

environment.

Overall, the vastly different modelling methods produce

consistent results in cross-validating the plasmonic

response of the test 50 and 200-nm Au spheres, illuminated

by a plane wave in free space and on a substrate and

illuminated by an evanescent wave. All the methods above

are derived from Maxwell’s equations. In spite of their

naivety in having no knowledge and no explicit imple-

mentation of the collective oscillation of valence electrons

resonating with the incident field, the surface plasmon

resonance phenomenon is reproduced.
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29. V.L.Y. Loke, M.P. Mengüç, J. Opt. Soc. Am. A 27, 2293–2303

(2010)

30. A. Sommerfeld, Ann. Physik 28, 665–736 (1909)

31. W.C. Chew, Waves, Fields in Inhomogeneous Media. (Van No-

strand Reinhold, New York, 1990)

32. R. Schmehl, B.M. Nebeker, E.D. Hirleman, J. Opt. Soc. Am. A

14, 3026–3036 (1997)

33. A. Taflove, S.C. Hagness, Computational Electrodynamics: The

Finite-Difference Time-Domain Method, 3rd edn. (Artech House,

Boston, 2005)

34. J.P. Berenger, J. Comput. Phys. 114, 185–200 (1994)

35. Z.S. Sacks, D.M. Kingsland, R. Lee, J.F. Lee, IEEE Trans. An-

tenn. Propag. 43, 1460–1463 (1995)

36. S. Gedney, IEEE Trans. Antennas Propagat AP-44, 1630–1639

(1996)

37. J.A. Roden, S.D. Gedney, Microw. Opt. Tech. Lett. 27, 334–339

(2000)

38. Lumerical FDTD Solutions Package Reference Guide for FDTD

Solutions v7.0.1 ed (2010)

39. M.A. Morgan, K.K. Mei, IEEE Trans. Antenn. Propag. 27,

202–214 (1979)

40. R. Mittra, O. Ramahi, Finite element and finite difference

methods in Electromagnetic Scattering, vol. II, ed. by M. Morgan

(Elsevier, New York, 1990)

41. J.L. Volakis, A. Chatterjee, L.C. Kempel, Finite Element Method

for Electromagnetics. (IEEE Press, New York, 1998)

42. X.Q. Sheng, J.M. Jin, J.M. Song, C.C. Lu, W.C. Chew, IEEE T.

Antenn. Propag. 46, 303–311 (1998)

43. COMSOL Multiphysics RF Module Reference Guide v3.5a ed

(2008)

44. G.M. Huda, E.U. Donev, M.P. Mengüç, J.T. Hastings, Opt.
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