METAL–SEMICONDUCTOR TRANSITIONS IN NANOSCALE VANADIUM DIOXIDE—THIN FILMS, SUBWAVELENGTH HOLES, AND NANOPARTICLES

By

Eugenii U. Donev

Dissertation

Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

 $_{\mathrm{in}}$

Physics

December 2008

Nashville, Tennessee

Approved: Leonard C. Feldman Richard F. Haglund, Jr. Deyu Li James H. Dickerson Sharon M. Weiss

© Copyright by Eugenii U. Donev 2008 All Rights Reserved

APPENDIX A

VANADIUM SESQUIOXIDE (V₂O₃) THIN FILMS

Abstract

The following information is meant to provide some measure of continuity in our effort to make another material that undergoes a spectacular metal-insulator phase transition: vanadium sesquioxide, V_2O_3 . A simple fabrication protocol is presented, along with some of the characterization data used to establish it. The two main steps are: (i) room-temperature PLD of amorphous V_xO_y with excess oxygen content, followed by (ii) high-temperature annealing in a reducing atmosphere and crystallization to stoichiometric V_2O_3 .

1.1 Introduction

V₂O₃ is the other famous oxide of vanadium. First discovered by Föex in 1946, vanadium sesquioxide undergoes a metal-to-insulator transition upon cooling and the reverse transition upon heating through $T_c \approx 150$ K, accompanied by magnetic and crystallographic changes: at room temperature V₂O₃ is a paramagnetic metal with a rhombohedral (corundum) lattice, while the low-temperature phase is an antiferromagnetic monoclinic insulator with a 0.6-eV bandgap.²¹⁰ Resistivity jumps by up to 6–7 orders of magnitude,^{21,211} infrared (IR) transmission also increases,^{212–215} and the first-order nature of the transition gives rise to hysteresis. The V₂O₃ phase transition has long been regarded as a model for the Mott-Hubbard transition mechanism^{59,210,216,217} (see also Section 1.1.3), with the monoclinic lattice distortion thought to originate simply from magnetostrictive forces⁶³ due to the peculiar magnetic ordering²³ below T_c . Unlike the structural transition of VO₂, the change in crystal structure of V₂O₃ is *not* associated with a Peierls instability and unit-cell doubling.⁵⁹ However, recent X-ray absorption measurements²¹⁸ of the temperature dependence of the local structure have identified a structural *precursor* to the metal-to-insulator transition of V_2O_3 , namely a continuous increase in the monoclinic tilt starting well before the onset of the electronic and magnetic transition. These findings suggest that it may be the orbital degrees of freedom that drive the metal-to-insulator transition via changes in hybridization, which are in turn triggered by the monoclinic distortion.²¹⁸ Here too, as in the case of VO₂, the web of cause-and-effect links in the transition mechanism of V_2O_3 is yet to be untangled.

Studies devoted to bulk single crystals or thin films of V_2O_3 abound in the scientific literature: according to Imada *et al.*,²³ more than 500 papers on V_2O_3 had been published as of 1998. Yet only a handful of articles^{219–225} deal with nanocrystalline V_2O_3 —all reporting exclusively on chemical synthesis and/or catalysis; I know of no studies on the phase transition of V_2O_3 nanoparticles (NPs). Observation of the optical switching of V_2O_3 NPs would be more than a scientific "first". Studying nanostructures of another system that behaves like VO_2 in terms of optical changes across the phase transition, and yet differs from VO_2 as regards the roles of the various degrees of freedom involved, can only improve our understanding of how one solid-state phase transforms into another at the nanoscale. In particular, experimental data from "switchable" V_2O_3 NPs would provide a new set of benchmarks for testing the "potent defect" model (see Section 1.3) of the microscopic origins of such solid-solid transformations.

1.2 A V_2O_3 "recipe"

The following deposition and annealing steps were found to yield good-quality V_2O_3 films (~100 nm) on fused-silica substrates:

• Clean substrate: solvents (TCE, acetone, methanol/IPA, deionized water) and/or UVozone treatment.

• Deposit amorphous $V_x O_y$ ($y/x \ge 1.5$) film by room-temperature PLD: V-metal or $V_2 O_3$ pressed-powder target; 300-mJ pulses focused to ~ 0.1 cm² on target surface; 15-cm targetto-substrate distance; 3-5 mtorr O_2 .

• Reduce and crystallize deposited film by annealing in tube furnace, one sample at a time: (i) introduce 1 atm of flowing {4% H₂ + 96% Ar} into vacuum-tight quartz tube, pre-evacuated to 1–5 mtorr (use oil filter with the roughing pump); (ii) ramp up furnace temperature to 600 °C at 30 °C/min; (iii) dwell at 600 °C for 60 min; (iv) turn off heaters and let system cool down to (near) room temperature under flowing gas mix.

When viewed in transmission against white light, a "switchable" V₂O₃ film should look some shade of grey, depending on thickness, but without a tinge of green, brown, or yellow. The acid test, as it were, for good-quality V_2O_3 material is the optical switching in the vicinity of 150 K: sharpness, contrast, and hysteresis of the IR transmission across the metal-insulator transition. The transmission setup used here comprises: (i) fiber-coupled light source, either an IR laser at $\lambda = 1330$ nm or a white-light tungsten-halogen lamp; (ii) mechanical chopper connected to a lock-in amplifier through a frequency generator; (iii) beamsplitter and CDD camera for visual inspection of the interrogated area via reflected and scattered light from the sample surface; (iv) one focusing and one collection lowmagnification micro-objectives, with the sample in-between; (v) pinhole aperture (~ 0.5 mm) for stray-light rejection; (vi) InGaAs IR detector with responsivity (amp/watt) greater than 10 % for $\lambda = 800-1700$ nm; (vii) lock-in amplifier, with input signals from the chopper and the detector, and output of amplified and filtered DC signal proportional to the intensity of the transmitted light. The sample is mounted on a thin copper plate in contact with the heating/cooling pad of a micro-refrigerator assembly, which cools on the principle of expansion of highly pressurized dry N_2 gas inside a series of micrometer-sized capillaries (Joule-Thomson effect) and heats by means of a resistor coil. The assembly is housed in a small optical chamber, continuously pumped to maintain roughing vacuum. The sample temperature is scanned and maintained $(\pm 0.05 \text{ K})$ using a controller unit, which supplies power to the resistive heater based on the feedback from a temperature sensor under the heating plate.

1.3 Different annealing temperatures

The first three figures show the effect of annealing temperature on the IR transmission (Figures A.1 and A.3) and X-ray diffraction (XRD) (Figure A.2) of two sets of initially amorphous $V_x O_y$ films on fused-silica (SiO₂) substrates. Upon visual inspection of these data, 600 °C was chosen for further experiments based on somewhat subjective criteria: (i) it is at the lower end of the temperature window that yielded films with "good switching", hence reducing the possibility that the (eventual) closely-spaced $V_x O_y$ NPs would diffuse towards one another and coalesce during the anneal; (ii) unlike the 925-°C or 850-°C films, the film annealed at 600 °C has (nearly) completed its transition into the insulating state by the lowest measured temperature (85 K); (iii) switching contrast is larger for the 65-nm-thick 600-°C film than for its 700-°C counterpart; (iv) 600 °C has been popular processing temperature in previous V₂O₃ studies.²¹²⁻²¹⁴

1.4 Different annealing times and ramp rates

The interesting curve in Figure A.4 is the one for slow ramp-up (3 °C/min) to the final annealing temperature of 600 °C. That particular film likely became sub-stoichiometric $(V_2O_{y<3})$ before it had had a chance to crystallize into V_2O_3 . A ramp-up rate of 30 °C/min and a dwell time of 1 hr were chosen for subsequent anneals, since dwell times of 0–4 hr had all produced switchable V_2O_3 films (Figures A.1 and A.4).

1.5 Different PLD target materials

Heeding an apropos observation by Schuler *et al.*²¹³ that V_2O_3 films grown by reactive e-beam evaporation from a V-metal target or from a sintered V_2O_3 powder exhibited "a drastic difference in quality", the former being the better, we performed depositions from four different PLD targets: V-metal disc from Cerac, inc. (http://www.cerac.com) and pressed-powder discs with nominal compositions of V_2O_3 , VO_2 , and V_2O_5 from Vin Karola Instruments (http://www.vinkarola.com). While the V and V_2O_3 targets did produce films with steeper transmission hystereses than those from the other two targets, the differences in quality were hardly drastic (see Figure A.8).

Figure A.1: Relative IR transmission as a function of temperature (heating part of hysteresis cycle) for 140-nm-thick V₂O₃ films on fused silica, H₂-annealed at the indicated temperatures: 1100, 1000, 925, 850, 700 °C. Dwell times: 2 hr, except for the 925-°C film, which was annealed for 4 hr. Illumination sources: white-light lamp for the 925-°C film, and IR laser ($\lambda = 1330$ nm) for the rest. The data for each film are normalized to the highest transmission in the low-temperature phase; the curves are offset vertically relative to one another for clarity.

Figure A.2: Room-temperature X-ray diffraction (XRD) θ -2 θ scans (Cu- K_{α} , $\lambda = 1.54$ Å), for the above 140-nm-thick V₂O₃ films on fused silica, H₂-annealed at the indicated temperatures: (a) 700 °C; (b) 850 °C; (d) 925 °C; (e) 1000 °C; (f) 1100 °C. Part (c) shows the XRD scan for the film in (d) as deposited, *i.e.*, before annealing at 925 °C. Peaks at the powder-diffraction values (PDF #34-0187) of $2\theta = 36.23^{\circ}$, 65.193°, and 76.914° correspond to reflections from V₂O₃ planes (1 1 0), (3 0 0), and (2 2 0), respectively.

 V_2O_3 on silica: Different anneal temperatures 2

Figure A.3: Relative IR transmission as a function of temperature for 65-nm-thick V_2O_3 films, H₂-annealed at the indicated temperatures: 550, 600, 650, 700, 750, 800 °C. Dwell time: 1 hr. Illumination: white-light lamp. Data for each film are normalized to the highest transmission in the low-temperature phase; the curves are offset vertically relative to one another for clarity. Filled symbols (red lines) correspond to the heating part of the hysteresis cycle, and open symbols (blue lines) to the cooling part.

Figure A.4: Relative IR transmission as a function of temperature for 65-nm-thick V_2O_3 films (from the same initial batch as the films in Figure A.3), H₂-annealed by ramping up the temperature to 600 °C at the indicated rates and holding it constant thereafter for the indicated dwell times. Illumination source: white-light lamp. Data for each film are normalized to the highest transmission in the low-temperature phase; the curves are offset vertically relative to one another for clarity. Filled symbols (red lines) correspond to the heating part of the hysteresis cycle, and open symbols (blue lines) to the cooling part.

Figure A.5: Example of experimental (circles) and simulated (lines) RBS spectra for vanadium-oxide film on fused-silica (SiO₂) substrate: (a) before H₂ anneal (*i.e.*, as deposited); (b) after H₂ anneal for 1 hr at 600 °C. The film was grown by room-temperature PLD from a V₂O₃ target in 3 mtorr O₂ background gas. Simulations were performed using the SIMNRA program.¹⁰⁷ Analysis: (a) V₂O_{3.12±0.01}, $t \approx 101$ nm; (b) V₂O_{3.03±0.01}, $t \approx 99$ nm.

Figure A.6: RBS-measured stoichiometry (see example in Figure A.5), before and after H₂ anneal (1 hr at 600 °C), for vanadium-oxide films deposited from V-metal (in 3 mtorr O_2), V_2O_3 (in 3 mtorr O_2), VO_2 (in vacuum), and V_2O_5 (in vacuum) PLD targets. The number above each bar denotes the thickness in nanometers.

Figure A.7: Room-temperature XRD scans (Cu– K_{α} , $\lambda = 1.54$ Å), before and after H₂ anneal (1 hr at 600 °C), for vanadium-oxide films deposited from (a) V-metal (in 3 mtorr O₂), (b) V₂O₃ (in 3 mtorr O₂), (c) VO₂ (in vacuum), and (d) V₂O₅ (in vacuum) PLD targets. Peaks at the powder-diffraction values (PDF #34-0187) of $2\theta = 36.23^{\circ}$ and 65.193° correspond to reflections from V₂O₃ planes (1 1 0) and (3 0 0), respectively.

Hystereses of V₂O₃ on silica: Different PLD targets

Figure A.8: Optical transmittance for H₂-annealed V_2O_3 films deposited from different PLD target materials. Anneal: 1 hr at 600 °C. Illumination source: white-light lamp. Data for each film are normalized at each temperature point to transmission through the bare fused-silica substrate; the curves are offset vertically relative to one another for clarity. Filled symbols (red lines) correspond to the heating part of the hysteresis cycle, and open symbols (blue lines) to the cooling part.

REFERENCES

- [1] C. KÜBLER, H. EHRKE, R. HUBER, R. LOPEZ, A. HALABICA, R. F. HAGLUND, and A. LEITENSTORFER, *Physical Review Letters* **99**, 116401 (2007).
- [2] M. M. QAZILBASH, M. BREHM, B. G. CHAE, P. C. HO, G. O. ANDREEV, B. J. KIM, S. J. YUN, A. V. BALATSKY, M. B. MAPLE, F. KEILMANN, H. T. KIM, and D. N. BASOV, *Science* **318**, 1750 (2007).
- [3] P. BAUM, D. S. YANG, and A. H. ZEWAIL, *Science* **318**, 788 (2007).
- [4] A. SHARONI, J. G. RAMÍREZ, and I. K. SCHULLER, Physical Review Letters 101, 026404 (2008).
- [5] R. LOPEZ, T. E. HAYNES, L. A. BOATNER, L. C. FELDMAN, and R. F. HAGLUND, *Physical Review B* 65, 224113 (2002).
- [6] T. W. EBBESEN, H. J. LEZEC, H. F. GHAEMI, T. THIO, and P. A. WOLFF, *Nature* 391, 667 (1998).
- [7] T. J. KIM, T. THIO, T. W. EBBESEN, D. E. GRUPP, and H. J. LEZEC, Optics Letters 24, 256 (1999).
- [8] J. DINTINGER, A. DEGIRON, and T. W. EBBESEN, MRS Bulletin 30, 381 (2005).
- [9] R. LOPEZ, L. C. FELDMAN, and R. F. HAGLUND, *Physical Review Letters* **93**, 177403 (2004).
- [10] C. X. WANG and G. W. YANG, Materials Science & Engineering R: Reports 49, 157 (2005).
- [11] J. G. LEE and H. MORI, *Physical Review Letters* **93**, 235501 (2004).
- [12] K. K. NANDA, A. MAISELS, F. E. KRUIS, H. FISSAN, and S. STAPPERT, *Physical Review Letters* 91, 106102 (2003).
- [13] T. SHIBATA, B. A. BUNKER, Z. Y. ZHANG, D. MEISEL, C. F. VARDEMAN, and J. D. GEZELTER, Journal of the American Chemical Society 124, 11989 (2002).
- [14] T. SHINOHARA, T. SATO, and T. TANIYAMA, Physical Review Letters 91, 197201 (2003).
- [15] H. J. MAMIN, R. BUDAKIAN, B. W. CHUI, and D. RUGAR, *Physical Review Letters* 91, 207604 (2003).
- [16] K. DICK, T. DHANASEKARAN, Z. ZHANG, and D. MEISEL, Journal of the American Chemical Society 124, 2312 (2002).
- [17] R. A. MASUMURA, P. M. HAZZLEDINE, and C. S. PANDE, Acta Materialia 46, 4527 (1998).

- [18] D. KATZ, T. WIZANSKY, O. MILLO, E. ROTHENBERG, T. MOKARI, and U. BANIN, *Physical Review Letters* 89, 199901 (2002).
- [19] J. T. LAU, A. FOHLISCH, R. NIETUBYC, M. REIF, and W. WURTH, *Physical Review Letters* 89, 057201 (2002).
- [20] C. VOISIN, D. CHRISTOFILOS, N. D. FATTI, F. VALLEE, B. PREVEL, E. COTTANCIN, J. LERME, M. PELLARIN, and M. BROYER, *Physical Review Letters* 85, 2200 (2000).
- [21] F. J. MORIN, *Physical Review Letters* **3**, 34 (1959).
- [22] J. B. GOODENOUGH, Journal of Solid State Chemistry 3, 490 (1971).
- [23] M. IMADA, A. FUJIMORI, and Y. TOKURA, *Reviews of Modern Physics* 70, 1039 (1998).
- [24] P. A. Cox, Transition metal oxides: An introduction to their electronic structure and properties, The International Series of Monographs on Chemistry, Clarendon Press; Oxford University Press, Oxford New York, 1992.
- [25] A. ZYLBERSZTEJN and N. F. MOTT, *Physical Review B* 11, 4383 (1975).
- [26] D. PAQUET and P. L. HUGON, *Physical Review B* 22, 5284 (1980).
- [27] R. M. WENTZCOVITCH, W. W. SCHULZ, and P. B. ALLEN, *Physical Review Letters* 73, 3043 (1994).
- [28] T. M. RICE, H. LAUNOIS, and J. P. POUGET, Physical Review Letters 73, 3042 (1994).
- [29] R. M. WENTZCOVITCH, W. W. SCHULZ, and P. B. ALLEN, *Physical Review Letters* 72, 3389 (1994).
- [30] S. BIERMANN, A. POTERYAEV, A. I. LICHTENSTEIN, and A. GEORGES, *Physical Review Letters* 94, 026404 (2005).
- [31] A. CAVALLERI, T. DEKORSY, H. H. W. CHONG, J. C. KIEFFER, and R. W. SCHOENLEIN, *Physical Review B* 70, 161102 (2004).
- [32] H. T. KIM, Y. W. LEE, B. J. KIM, B. G. CHAE, S. J. YUN, K. Y. KANG, K. J. HAN, K. J. YEE, and Y. S. LIM, *Physical Review Letters* 97, 266401 (2006).
- [33] A. CAVALLERI, M. RINI, and R. W. SCHOENLEIN, Journal of the Physical Society of Japan 75, 011004 (2006).
- [34] V. S. VIKHNIN, S. LYSENKO, A. RUA, F. FERNANDEZ, and H. LIU, Solid State Communications 137, 615 (2006).
- [35] S. LYSENKO, A. J. RUA, V. VIKHNIN, J. JIMENEZ, F. FERNANDEZ, and H. LIU, Applied Surface Science 252, 5512 (2006).
- [36] M. S. GRINOLDS, V. A. LOBASTOV, J. WEISSENRIEDER, and A. H. ZEWAIL, Proceedings of the National Academy of Sciences of the United States of America 103, 18427 (2006).

- [37] I. YAMASHITA, H. KAWAJI, T. ATAKE, Y. KUROIWA, and A. SAWADA, *Physical Review B* 68, 092104 (2003).
- [38] A. S. SHIRINYAN and M. WAUTELET, Nanotechnology 15, 1720 (2004).
- [39] G. F. GOYA, M. VEITH, R. RAPALAVICUITE, H. SHEN, and S. MATHUR, Applied Physics A: Materials Science & Processing 80, 1523 (2005).
- [40] K. JACOBS, J. WICKHAM, and A. P. ALIVISATOS, Journal of Physical Chemistry B 106, 3759 (2002).
- [41] D. ZAZISKI, S. PRILLIMAN, E. C. SCHER, M. CASULA, J. WICKHAM, S. M. CLARK, and A. P. ALIVISATOS, *Nano Letters* 4, 943 (2004).
- [42] Q. XU, I. D. SHARP, C. W. YUAN, D. O. YI, C. Y. LIAO, A. M. GLAESER, A. M. MINOR, J. W. BEEMAN, M. C. RIDGWAY, P. KLUTH, I. AGER, J. W., D. C. CHRZAN, and E. E. HALLER, *Physical Review Letters* 97, 155701 (2006).
- [43] R. E. CECH and D. TURNBULL, Journal of Metals, 124 (1956).
- [44] I. W. CHEN, Y. H. CHIAO, and K. TSUZAKI, Acta Metallurgica 33, 1847 (1985).
- [45] J. Y. SUH, R. LOPEZ, L. C. FELDMAN, and R. F. HAGLUND, Journal of Applied Physics 96, 1209 (2004).
- [46] D. BRASSARD, S. FOURMAUX, M. JEAN-JACQUES, J. C. KIEFFER, and M. A. EL KHAKANI, Applied Physics Letters 87, 051910 (2005).
- [47] R. A. ALIEV, V. N. ANDREEV, V. M. KAPRALOVA, V. A. KLIMOV, A. I. SOBOLEV, and E. B. SHADRIN, *Physics of the Solid State* 48, 929 (2006).
- [48] J. ROZEN, R. LOPEZ, R. F. HAGLUND, and L. C. FELDMAN, Applied Physics Letters 88, 081902 (2006).
- [49] K. NAGASHIMA, T. YANAGIDA, H. TANAKA, and T. KAWAI, Journal of Applied Physics 101, 026103 (2007).
- [50] R. LOPEZ, L. A. BOATNER, T. E. HAYNES, R. F. HAGLUND, and L. C. FELDMAN, Applied Physics Letters **79**, 3161 (2001).
- [51] R. LOPEZ, L. A. BOATNER, T. E. HAYNES, L. C. FELDMAN, and R. F. HAGLUND, Journal of Applied Physics 92, 4031 (2002).
- [52] R. LOPEZ, T. E. HAYNES, L. A. BOATNER, L. C. FELDMAN, and R. F. HAGLUND, Optics Letters 27, 1327 (2002).
- [53] R. LOPEZ, J. Y. SUH, L. C. FELDMAN, and R. F. HAGLUND, Symposium Proceedings of the Materials Research Society 820, R1.5 (2004).
- [54] M. RINI, A. CAVALLERI, R. W. SCHOENLEIN, R. LOPEZ, L. C. FELDMAN, R. F. HAGLUND, L. A. BOATNER, and T. E. HAYNES, *Optics Letters* 30, 558 (2005).
- [55] V. EYERT, Annalen der Physik 11, 650 (2002).

- [56] M. M. QAZILBASH, K. S. BURCH, D. WHISLER, D. SHREKENHAMER, B. G. CHAE, H. T. KIM, and D. N. BASOV, *Physical Review B* 74, 205118 (2006).
- [57] H. W. VERLEUR, A. S. BARKER, and C. N. BERGLUND, *Physical Review* 172, 788 (1968).
- [58] S. SHIN, S. SUGA, M. TANIGUCHI, M. FUJISAWA, H. KANZAKI, A. FUJIMORI, H. DAIMON, Y. UEDA, K. KOSUGE, and S. KACHI, *Physical Review B* 41, 4993 (1990).
- [59] M. M. QAZILBASH, A. A. SCHAFGANS, K. S. BURCH, S. J. YUN, B. G. CHAE, B. J. KIM, H. T. KIM, and D. N. BASOV, *Physical Review B* 77, 115121 (2008).
- [60] S. LYSENKO, V. VIKHNIN, F. FERNANDEZ, A. RUA, and H. LIU, *Physical Review B* **75**, 075109 (2007).
- [61] C. KITTEL, Introduction to solid state physics, Wiley, New York, 7th edition, 1996.
- [62] J. SPALEK, Superconductivity mechanisms, in *Encyclopedia of Modern Physics*, edited by R. A. MEYERS and S. N. SHORE, pp. 679–716, Academic Press, San Diego, 1990.
- [63] T. M. RICE and D. B. MCWHAN, IBM Journal of Research and Development 14, 251 (1970).
- [64] N. F. MOTT, Reviews of Modern Physics 40, 677 (1968).
- [65] J. HUBBARD, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 276, 238 (1963).
- [66] A. I. BUZDIN and L. N. BULAYEVSKII, Uspekhi Fizicheskikh Nauk 131, 495 (1980).
- [67] J. M. TOMCZAK and S. BIERMANN, Journal of Physics: Condensed Matter 19, 365206 (2007).
- [68] M. W. HAVERKORT, Z. HU, A. TANAKA, W. REICHELT, S. V. STRELTSOV, M. A. KOROTIN, V. I. ANISIMOV, H. H. HSIEH, H. J. LIN, C. T. CHEN, D. I. KHOMSKII, and L. H. TJENG, *Physical Review Letters* **95**, 196404 (2005).
- [69] C. KÜBLER, H. EHRKE, A. LEITENSTORFER, R. LOPEZ, A. HALABICA, and R. F. HAGLUND, Ultrafast Conductivity and Lattice Dynamics of Insulator-Metal Phase Transition in VO2 Studied via Multi-Terahertz Spectroscopy, in *Joint 31st Int'l Conference on Infrared and Millimeter Waves and 14th Int'l Conference on Terahertz Electronics (IRMMW-THz'06)*, Shanghai, China, 2006.
- [70] C. N. R. RAO and K. J. RAO, *Phase transitions in solids: an approach to the study of the chemistry and physics of solids*, McGraw-Hill, New York, 1978.
- [71] C. N. BERGLUND and H. J. GUGGENHEIM, Physical Review 185, 1022 (1969).
- [72] J. ORTÍN, A. PLANES, and L. DELAEY, Hysteresis in Shape-Memory Materials, in *The Science of Hysteresis*, edited by G. BERTOTTI and I. D. MAYERGOYZ, volume 3, pp. 467–553, Elsevier, London, 2005.

- [73] L. DELAEY, Diffusionless Transformations, in *Phase Transformations in Materials*, edited by G. KOSTORZ, pp. 583–654, Wiley-VCH, Weinheim; New York; Chichester, new edition, 2001.
- [74] P. C. CLAPP, Journal de Physique IV 5, 11 (1995).
- [75] I. A. KHAKHAEV, F. A. CHUDNOVSKII, and E. B. SHADRIN, *Fizika Tverdogo Tela* 36, 1643 (1994).
- [76] H. S. CHOI, J. S. AHN, J. H. JUNG, T. W. NOH, and D. H. KIM, *Physical Review B* 54, 4621 (1996).
- [77] F. J. PEREZ-RECHE, E. VIVES, L. MANOSA, and A. PLANES, *Physical Review Letters* 8719, 195701 (2001).
- [78] D. MAURER, A. LEUE, R. HEICHELE, and V. MÜLLER, *Physical Review B* 60, 13249 (1999).
- [79] J. NARAYAN and V. M. BHOSLE, Journal of Applied Physics 100, 103524 (2006).
- [80] L. A. L. DE ALMEIDA, G. S. DEEP, A. M. N. LIMA, H. F. NEFF, and R. C. S. FREIRE, *Ieee Transactions on Instrumentation and Measurement* 50, 1030 (2001).
- [81] V. A. KLIMOV, I. O. TIMOFEEVA, S. D. KHANIN, E. B. SHADRIN, A. V. ILINSKII, and F. SILVA-ANDRADE, *Technical Physics* 47, 1134 (2002).
- [82] R. A. ALIEV and V. A. KLIMOV, *Physics of the Solid State* 46, 532 (2004).
- [83] R. A. ALIEV, V. N. ANDREEV, V. A. KLIMOV, V. M. LEBEDEV, S. E. NIKITIN, E. I. TERUKOV, and E. B. SHADRIN, *Technical Physics* 50, 754 (2005).
- [84] W. HAIDINGER and D. GROSS, *Thin Solid Films* **12**, 433 (1972).
- [85] Y. MURAOKA and Z. HIROI, Applied Physics Letters 80, 583 (2002).
- [86] G. XU, P. JIN, M. TAZAWA, and K. YOSHIMURA, Applied Surface Science 244, 449 (2005).
- [87] E. KUSANO and J. A. THEIL, Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films 7, 1314 (1989).
- [88] V. A. KLIMOV, I. O. TIMOFEEVA, S. D. KHANIN, E. B. SHADRIN, A. V. IL'INSKII, and F. SILVA-ANDRADE, *Semiconductors* **37**, 370 (2003).
- [89] F. BETEILLE and J. LIVAGE, Journal of Sol-Gel Science and Technology 13, 915 (1998).
- [90] W. BURKHARDT, T. CHRISTMANN, B. K. MEYER, W. NIESSNER, D. SCHALCH, and A. SCHARMANN, *Thin Solid Films* 345, 229 (1999).
- [91] E. CAVANNA, J. P. SEGAUD, and J. LIVAGE, *Materials Research Bulletin* **34**, 167 (1999).
- [92] F. C. CASE, Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films 2, 1509 (1984).

- [93] F. C. CASE, Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films 7, 1194 (1989).
- [94] A. LEONE, A. M. TRIONE, and F. JUNGA, *IEEE Transactions on Nuclear Science* 37, 1739 (1990).
- [95] P. JIN, S. NAKAO, and S. TANEMURA, Nuclear Instruments & Methods in Physics B: Beam Interactions with Materials & Atoms 141, 419 (1998).
- [96] L. B. LIN, T. C. LU, Q. LIU, Y. LU, and X. D. FENG, Surface & Coatings Technology 158, 530 (2002).
- [97] F. BETEILLE, L. MAZEROLLES, and J. LIVAGE, *Materials Research Bulletin* **34**, 2177 (1999).
- [98] C. PETIT, J. M. FRIGERIO, and M. GOLDMANN, Journal of Physics-Condensed Matter 11, 3259 (1999).
- [99] K. Y. TSAI, T. S. CHIN, H. P. D. SHIEH, and C. H. MA, Journal of Materials Research 19, 2306 (2004).
- [100] I. KARAKURT, J. BONEBERG, P. LEIDERER, R. LOPEZ, A. HALABICA, and R. F. HAGLUND, Applied Physics Letters 91, 091907 (2007).
- [101] J. E. MAHAN, Physical vapor deposition of thin films, Wiley, New York; Chichester, 2000.
- [102] O. SVELTO, S. LONGHI, G. D. VALLE, S. KÜCK, G. HUBER, M. POLLNAU, and H. HILLMER ETC., Lasers and Coherent Light Sources, in *Springer Handbook of Lasers and Optics*, edited by F. TRÄGER, pp. 583–936, Springer, New York, 2007.
- [103] N. D. BASSIM, P. K. SCHENCK, E. U. DONEV, E. J. HEILWEIL, E. COCKAYNE, M. L. GREEN, and L. C. FELDMAN, *Applied Surface Science* 254, 785 (2007).
- [104] C. A. VOLKERT and A. M. MINOR, MRS Bulletin 32, 389 (2007).
- [105] P. RAI-CHOUDHURY, Handbook of Microlithography, Micromachining, and Microfabrication, volume 1, SPIE Optical Engineering Press; Institution of Electrical Engineers, Bellingham, Wash., USA London, UK, 1997.
- [106] T. L. ALFORD, L. C. FELDMAN, and J. W. MAYER, Fundamentals of nanoscale film analysis, Springer, New York; London, 2007.
- [107] M. MAYER, SIMNRA (ver. 5.02), http://www.ipp.mpg.de/~mam, 2004.
- [108] K. IIZUKA, *Elements of photonics*, Wiley Series in Pure and Applied Optics, Wiley, New York, 2002.
- [109] WITEC, AlphaSNOM Manual, WITec Wissenschaftliche Instrumente und Technologie GmbH, 2002.
- [110] M. Fox, Optical properties of solids, Oxford Master Series in Condensed Matter Physics, Oxford University Press, Oxford; New York, 2001.

- [111] G. BROOKER, Modern classical optics, Oxford University Press, Oxford, 2003.
- [112] L. NOVOTNY and B. HECHT, *Principles of Nano-Optics*, Cambridge University Press, 2006.
- [113] S. A. MAIER and H. A. ATWATER, Journal of Applied Physics 98, 011101 (2005).
- [114] U. KREIBIG, M. GARTZ, A. HILGER, and H. HOVEL, *Optical investigations of surfaces and interfaces of metal clusters*, volume 4, JAI Press, Inc., Stanford, 1998.
- [115] K. L. KELLY, E. CORONADO, L. L. ZHAO, and G. C. SCHATZ, Journal of Physical Chemistry B 107, 668 (2003).
- [116] J. D. JACKSON, *Classical electrodynamics*, Wiley, New York, 3rd edition, 1999.
- [117] M. L. SANDROCK and C. A. FOSS, Journal of Physical Chemistry B 103, 11398 (1999).
- [118] G. MIE, Annalen der Physik 25, 377 (1908).
- [119] I. W. SUDIARTA and P. CHYLEK, Journal of the Optical Society of America A 18, 1275 (2001).
- [120] H. C. VAN DE HULST, Light Scattering by Small Particles, Dover Publications, Inc., New York, 1981.
- [121] M. B. CORTIE, A. DOWD, N. HARRIS, and M. J. FORD, *Physical Review B* 75, 113405 (2007).
- [122] L. R. HIRSCH, R. J. STAFFORD, J. A. BANKSON, S. R. SERSHEN, B. RIVERA, R. E. PRICE, J. D. HAZLE, N. J. HALAS, and J. L. WEST, *Proceedings of the National Academy of Sciences of the United States of America* 100, 13549 (2003).
- [123] J. M. BROCKMAN, B. P. NELSON, and R. M. CORN, Annual Review of Physical Chemistry 51, 41 (2000).
- [124] E. U. DONEV, J. Y. SUH, F. VILLEGAS, R. LOPEZ, R. F. HAGLUND, and L. C. FELDMAN, *Physical Review B* 73, 201401 (2006).
- [125] J. Y. SUH, E. U. DONEV, R. LOPEZ, L. C. FELDMAN, and R. F. HAGLUND, Applied Physics Letters 88, 133115 (2006).
- [126] A. BIANCONI, S. STIZZA, and R. BERNARDINI, *Physical Review B* 24, 4406 (1981).
- [127] Y. N. XIA and N. J. HALAS, MRS Bulletin **30**, 338 (2005).
- [128] G. XU, Y. CHEN, M. TAZAWA, and P. JIN, Journal of Physical Chemistry B 110, 2051 (2006).
- [129] E. A. CORONADO and G. C. SCHATZ, Journal of Chemical Physics 119, 3926 (2003).
- [130] M. MAAZA, O. NEMRAOUI, C. SELLA, A. C. BEYE, and B. BARUCH-BARAK, Optics Communications 254, 188 (2005).

- [131] W. RECHBERGER, A. HOHENAU, A. LEITNER, J. R. KRENN, B. LAMPRECHT, and F. R. AUSSENEGG, *Optics Communications* 220, 137 (2003).
- [132] J. Y. SUH, E. U. DONEV, D. W. FERRARA, K. A. TETZ, L. C. FELDMAN, and R. F. HAGLUND, *Journal of Optics A: Pure and Applied Optics*, 055202 (2008).
- [133] M. D. MCMAHON, R. LOPEZ, R. F. HAGLUND, E. A. RAY, and P. H. BUNTON, *Physical Review B* 73, 041401 (2006).
- [134] S. WANG, D. F. P. PILE, C. SUN, and X. ZHANG, Nano Letters 7, 1076 (2007).
- [135] C. A. FOSS, G. L. HORNYAK, J. A. STOCKERT, and C. R. MARTIN, Journal of Physical Chemistry 98, 2963 (1994).
- [136] J. GRAND, P. M. ADAM, A. S. GRIMAULT, A. VIAL, M. L. DE LA CHAPELLE, J. L. BIJEON, S. KOSTCHEEV, and P. ROYER, *Plasmonics* 1, 135 (2006).
- [137] K. H. SU, Q. H. WEI, X. ZHANG, J. J. MOCK, D. R. SMITH, and S. SCHULTZ, Nano Letters 3, 1087 (2003).
- [138] T. R. JENSEN, M. L. DUVAL, K. L. KELLY, A. A. LAZARIDES, G. C. SCHATZ, and R. P. VAN DUYNE, Journal of Physical Chemistry B 103, 9846 (1999).
- [139] J. J. MOCK, D. R. SMITH, and S. SCHULTZ, Nano Letters 3, 485 (2003).
- [140] P. B. JOHNSON and R. W. CHRISTY, *Physical Review B* 6, 4370 (1972).
- [141] S. LINK and M. A. EL-SAYED, Journal of Physical Chemistry B 103, 4212 (1999).
- [142] H. BETHE, *Physical Review* **66**, 163 (1944).
- [143] C. J. BOUWKAMP, IEEE Transactions on Antennas and Propagation AP18, 152 (1970).
- [144] H. LIU and P. LALANNE, *Nature* **452**, 728 (2008).
- [145] C. LIU, V. KAMAEV, and Z. V. VARDENY, Applied Physics Letters 86, 143501 (2005).
- [146] A. KRISHNAN, T. THIO, T. J. KIMA, H. J. LEZEC, T. W. EBBESEN, P. A. WOLFF, J. PENDRY, L. MARTIN-MORENO, and F. J. GARCIA-VIDAL, *Optics Communications* **200**, 1 (2001).
- [147] E. HENDRY, M. J. LOCKYEAR, J. GÓMEZ-RIVAS, L. KUIPERS, and M. BONN, *Physical Review B* 75, 235305 (2007).
- [148] E. U. DONEV, J. Y. SUH, R. LOPEZ, L. C. FELDMAN, and R. F. HAGLUND, Advances in OptoElectronics, 739135 (2008).
- [149] S. G. TIKHODEEV, A. L. YABLONSKII, E. A. MULJAROV, N. A. GIPPIUS, and T. ISHIHARA, *Physical Review B* 66, 045102 (2002).
- [150] A. ROBERTS, Journal of the Optical Society of America A: Optics Image Science and Vision 4, 1970 (1987).

- [151] A. LIEBSCH, *Physical Review Letters* **71**, 145 (1993).
- [152] W. L. BARNES, Journal of Optics A: Pure and Applied Optics 8, S87 (2006).
- [153] H. RAETHER, Springer Tracts in Modern Physics 111, 1 (1988).
- [154] W. L. BARNES, A. DEREUX, and T. W. EBBESEN, *Nature* **424**, 824 (2003).
- [155] A. V. ZAYATS, L. SALOMON, and F. DE FORNEL, Journal of Microscopy 210, 344 (2003).
- [156] H. F. GHAEMI, T. THIO, D. E. GRUPP, T. W. EBBESEN, and H. J. LEZEC, *Physical Review B* 58, 6779 (1998).
- [157] D. S. KIM, S. C. HOHNG, V. MALYARCHUK, Y. C. YOON, Y. H. AHN, K. J. YEE, J. W. PARK, J. KIM, Q. H. PARK, and C. LIENAU, *Physical Review Letters* 91, 143901 (2003).
- [158] P. LALANNE, J. C. RODIER, and J. P. HUGONIN, Journal of Optics A: Pure and Applied Optics 7, 422 (2005).
- [159] E. POPOV, M. NEVIERE, S. ENOCH, and R. REINISCH, *Physical Review B* **62**, 16100 (2000).
- [160] S. ENOCH, E. POPOV, M. NEVIERE, and R. REINISCH, Journal of Optics A: Pure and Applied Optics 4, S83 (2002).
- [161] T. THIO, H. F. GHAEMI, H. J. LEZEC, P. A. WOLFF, and T. W. EBBESEN, Journal of the Optical Society of America B: Optical Physics 16, 1743 (1999).
- [162] L. MARTIN-MORENO, F. J. GARCIA-VIDAL, H. J. LEZEC, K. M. PELLERIN, T. THIO, J. B. PENDRY, and T. W. EBBESEN, *Physical Review Letters* 86, 1114 (2001).
- [163] S. A. DARMANYAN and A. V. ZAYATS, *Physical Review B* 67, 035424 (2003).
- [164] W. L. BARNES, W. A. MURRAY, J. DINTINGER, E. DEVAUX, and T. W. EBBESEN, *Physical Review Letters* 92, 107401 (2004).
- [165] H. J. LEZEC and T. THIO, Optics Express 12, 3629 (2004).
- [166] G. GAY, O. ALLOSCHERY, B. V. DE LESEGNO, C. O'DWYER, J. WEINER, and H. J. LEZEC, Nature Physics 2, 262 (2006).
- [167] G. GAY, O. ALLOSCHERY, B. V. DE LESEGNO, J. WEINER, and H. J. LEZEC, *Physical Review Letters* 96, 213901 (2006).
- [168] G. GAY, O. ALLOSCHERY, J. WEINER, H. J. LEZEC, C. O'DWYER, M. SUKHAREV, and T. SEIDEMAN, *Physical Review E* 75, 016612 (2007).
- [169] P. LALANNE and J. P. HUGONIN, *Nature Physics* 2, 551 (2006).
- [170] F. KALKUM, G. GAY, O. ALLOSCHERY, J. WEINER, H. J. LEZEC, Y. XIE, and M. MANSURIPUR, Optics Express 15, 2613 (2007).

- [171] G. GAY, O. ALLOSCHERY, J. WEINER, H. J. LEZEC, C. O'DWYER, M. SUKHAREV, and T. SEIDEMAN, *Nature Physics* 2, 792 (2006).
- [172] F. J. GARCIA-VIDAL, S. G. RODRIGO, and L. MARTIN-MORENO, Nature Physics 2, 790 (2006).
- [173] P. LALANNE, J. P. HUGONIN, M. BESBES, and P. BIENSTMAN, Nature Physics 2, 792 (2006).
- [174] J. WEINER and H. J. LEZEC, Nature Physics 2, 791 (2006).
- [175] A. DEGIRON and T. W. EBBESEN, Journal of Optics A: Pure and Applied Optics 7, S90 (2005).
- [176] C. GENET, M. P. VAN EXTER, and J. P. WOERDMAN, Optics Communications 225, 331 (2003).
- [177] M. SARRAZIN and J. P. VIGNERON, *Physical Review E* 68, 016603 (2003).
- [178] M. SARRAZIN, J. P. VIGNERON, and J. M. VIGOUREUX, *Physical Review B* 67, 085415 (2003).
- [179] A. DEGIRON, H. J. LEZEC, W. L. BARNES, and T. W. EBBESEN, Applied Physics Letters 81, 4327 (2002).
- [180] K. L. VAN DER MOLEN, F. B. SEGERINK, N. F. VAN HULST, and L. KUIPERS, Applied Physics Letters 85, 4316 (2004).
- [181] A. HESSEL and A. A. OLINER, Applied Optics 4, 1275 (1965).
- [182] F. J. GARCIA DE ABAJO, *Reviews of Modern Physics* **79**, 1267 (2007).
- [183] J. E. STEWART and W. S. GALLAWAY, Applied Optics 1, 421 (1962).
- [184] E. D. PALIK, Handbook of optical constants of solids, Academic Press Handbook Series, Academic Press, Orlando, 1985.
- [185] W. BOGAERTS, P. BIENSTMAN, D. TAILLAERT, R. BAETS, and D. DE ZUTTER, IEEE Photonics Technology Letters 13, 565 (2001).
- [186] A. DEGIRON, H. J. LEZEC, N. YAMAMOTO, and T. W. EBBESEN, Optics Communications 239, 61 (2004).
- [187] A. CAVALLERI, C. TÓTH, C. W. SIDERS, J. A. SQUIER, F. RÁKSI, P. FORGET, and J. C. KIEFFER, *Physical Review Letters* 87, 237401 (2001).
- [188] M. F. BECKER, A. B. BUCKMAN, R. M. WALSER, T. LEPINE, P. GEORGES, and A. BRUN, Applied Physics Letters 65, 1507 (1994).
- [189] M. F. BECKER, A. B. BUCKMAN, R. M. WALSER, T. LEPINE, P. GEORGES, and A. BRUN, Journal of Applied Physics 79, 2404 (1996).
- [190] K. C. KAM and A. K. CHEETHAM, Materials Research Bulletin 41, 1015 (2006).

- [191] J. PARK, I. H. OH, E. LEE, K. W. LEE, C. E. LEE, K. SONG, and Y. J. KIM, *Applied Physics Letters* 91, 153112 (2007).
- [192] F. GUINNETON, L. SAUQUES, J. C. VALMALETTE, F. CROS, and J. R. GAVARRI, Journal of Physics and Chemistry of Solids 62, 1229 (2001).
- [193] S. Q. XU, H. P. MA, S. X. DAI, and Z. H. JIANG, Journal of Materials Science 39, 489 (2004).
- [194] S. A. PAULI, R. HERGER, P. R. WILLMOTT, E. U. DONEV, J. Y. SUH, and R. F. HAGLUND, Journal of Applied Physics 102, 073527 (2007).
- [195] K. HYUN-TAK, C. BYUNG-GYU, Y. DOO-HYEB, K. GYUNGOCK, K. KWANG-YONG, L. SEUNG-JOON, K. KWAN, and L. YONG-SIK, *Applied Physics Letters* 86, 242101 (2005).
- [196] R. SRIVASTAVA and L. L. CHASE, *Physical Review Letters* 27, 727 (1971).
- [197] M. PAN, J. LIU, H. M. ZHONG, S. W. WANG, Z. F. LI, X. H. CHEN, and W. LU, Journal of Crystal Growth 268, 178 (2004).
- [198] G. I. PETROV, V. V. YAKOVLEV, and J. SQUIER, Applied Physics Letters 81, 1023 (2002).
- [199] J. C. PARKER, *Physical Review B* **42**, 3164 (1990).
- [200] H.-T. YUAN, K.-C. FENG, X.-J. WANG, C. LI, C.-J. HE, and Y.-X. NIE, *Chinese Physics*, 82 (2004).
- [201] P. SCHILBE, *Physica B: Condensed Matter* **316**, 600 (2002).
- [202] N. N. BRANDT, O. O. BROVKO, A. Y. CHIKISHEV, and O. D. PARASCHUK, Applied Spectroscopy 60, 288 (2006).
- [203] C. H. GRIFFITHS and H. K. EASTWOOD, Journal of Applied Physics 45, 2201 (1974).
- [204] C. L. XU, X. MA, X. LIU, W. Y. QIU, and Z. X. SU, Materials Research Bulletin 39, 881 (2004).
- [205] D. DRAGOMAN and M. DRAGOMAN, *Optical characterization of solids*, Springer, Berlin; New York, 2002.
- [206] R. R. ANDRONENKO, I. N. GONCHARUK, V. Y. DAVYDOV, F. A. CHUDNOVSKII, and E. B. SHADRIN, *Physics of the Solid State* 36, 1136 (1994).
- [207] P. SCHILBE and D. MAURER, Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 370, 449 (2004).
- [208] H. H. RICHARDSON, Z. N. HICKMAN, A. O. GOVOROV, A. C. THOMAS, W. ZHANG, and M. E. KORDESCH, *Nano Letters* 6, 783 (2006).
- [209] A. O. GOVOROV, W. ZHANG, T. SKEINI, H. RICHARDSON, J. LEE, and N. A. KOTOV, *Nanoscale Research Letters* 1, 84 (2006).

- [210] G. A. THOMAS, D. H. RAPKINE, S. A. CARTER, A. J. MILLIS, T. F. ROSENBAUM, P. METCALF, and J. M. HONIG, *Physical Review Letters* 73, 1529 (1994).
- [211] S. YONEZAWA, Y. MURAOKA, Y. UEDA, and Z. HIROI, Solid State Communications 129, 245 (2004).
- [212] F. C. CASE, Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films 9, 461 (1991).
- [213] H. SCHULER, S. GRIGORIEV, and S. HORN, Materials Research Society Symposium Proceedings 474, 291 (1997).
- [214] B. SASS, C. TUSCHE, W. FELSCH, N. QUAAS, A. WEISMANN, and M. WENDEROTH, Journal of Physics: Condensed Matter 16, 77 (2004).
- [215] P. A. METCALF, S. GUHA, L. P. GONZALEZ, J. O. BARNES, E. B. SLAMOVICH, and J. M. HONIG, *Thin Solid Films* 515, 3421 (2007).
- [216] D. B. MCWHAN and J. P. REMEIKA, *Physical Review B* 2, 3734 (1970).
- [217] D. B. MCWHAN, A. JAYARAMAN, J. P. REMEIKA, and T. M. RICE, *Physical Review Letters* 34, 547 (1975).
- [218] P. PFALZER, G. OBERMEIER, M. KLEMM, S. HORN, and M. L. DENBOER, *Physical Review B* 73, 144106 (2006).
- [219] S. GUIMOND, M. ABU HAIJA, S. KAYA, J. LU, J. WEISSENRIEDER, S. SHAIKHUT-DINOV, H. KUHLENBECK, H. J. FREUND, J. DOBLER, and J. SAUER, *Topics in Catalysis* 38, 117 (2006).
- [220] Y. JIANG, S. DECKER, C. MOHS, and K. J. KLABUNDE, Journal of Catalysis 180, 24 (1998).
- [221] N. PINNA, M. ANTONIETTI, and M. NIEDERBERGER, Colloids and Surfaces A: Physicochemical and Engineering Aspects 250, 211 (2004).
- [222] C. V. RAMANA, S. UTSUNOMIYA, R. C. EWING, and U. BECKER, Solid State Communications 137, 645 (2006).
- [223] Z. H. YANG, P. J. CAI, L. Y. CHEN, Y. L. GU, L. SHI, A. W. ZHAO, and Y. T. QIAN, *Journal of Alloys and Compounds* 420, 229 (2006).
- [224] K. F. ZHANG, J. S. GUO, C. H. TAO, X. LIU, H. L. LI, and Z. X. SU, Chinese Journal of Inorganic Chemistry 21, 1090 (2005).
- [225] K. F. ZHANG, X. Z. SUN, G. W. LOU, X. LIU, H. L. LI, and Z. X. SU, Materials Letters 59, 2729 (2005).